3,855 research outputs found

    Surveys of the earth's resources and environment by satellites

    Get PDF
    The potential and promise of observing the earth from the vantage point of space is discussed. The systematic surveying of processes and phenomena occurring on the surface of the earth by Landsat 1 and Nimbus 5 is considered to be useful in the following areas: assessment of water resources; mineral and petroleum exploration; land use planning; crop, forest, and rangeland inventory; assessment of flood, earthquake, and other environmental hazards; monitoring coastal processes; environmental effects of industrial effluents and of air pollution; mapping the distribution and types of ice covering the earth's polar caps and global soil moisture distributions

    Universal resonant ultracold molecular scattering

    Full text link
    The elastic scattering amplitudes of indistinguishable, bosonic, strongly-polar molecules possess universal properties at the coldest temperatures due to wave propagation in the long-range dipole-dipole field. Universal scattering cross sections and anisotropic threshold angular distributions, independent of molecular species, result from careful tuning of the dipole moment with an applied electric field. Three distinct families of threshold resonances also occur for specific field strengths, and can be both qualitatively and quantitatively predicted using elementary adiabatic and semi-classical techniques. The temperatures and densities of heteronuclear molecular gases required to observe these univeral characteristics are predicted. PACS numbers: 34.50.Cx, 31.15.ap, 33.15.-e, 34.20.-bComment: 4 pages, 5 figure

    Radial and angular rotons in trapped dipolar gases

    Full text link
    We study Bose-Einstein condensates with purely dipolar interactions in oblate (pancake) traps. We find that the condensate always becomes unstable to collapse when the number of particles is sufficiently large. We analyze the instability, and find that it is the trapped-gas analogue of the ``roton-maxon'' instability previously reported for a gas that is unconfined in two dimensions. In addition, we find that under certain circumstances, the condensate wave function attains a biconcave shape, with its maximum density away from the center of the gas. These biconcave condensates become unstable due to azimuthl excitation - an angular roton.Comment: 4 pages, 3 figure

    Chaotic Orbits in Thermal-Equilibrium Beams: Existence and Dynamical Implications

    Full text link
    Phase mixing of chaotic orbits exponentially distributes these orbits through their accessible phase space. This phenomenon, commonly called ``chaotic mixing'', stands in marked contrast to phase mixing of regular orbits which proceeds as a power law in time. It is operationally irreversible; hence, its associated e-folding time scale sets a condition on any process envisioned for emittance compensation. A key question is whether beams can support chaotic orbits, and if so, under what conditions? We numerically investigate the parameter space of three-dimensional thermal-equilibrium beams with space charge, confined by linear external focusing forces, to determine whether the associated potentials support chaotic orbits. We find that a large subset of the parameter space does support chaos and, in turn, chaotic mixing. Details and implications are enumerated.Comment: 39 pages, including 14 figure
    • …
    corecore